
369 Views
WASSCE: BIOLOGY-THEORY-2009-Q1-Q4
$=(x+\frac{1}{x-2})(x-1)(x-2)$
$x\ne 1$ and $x\ne 2$
$\implies x(x-2)=x(x-1)(x-2)+x-1$
$\implies x^{2}-2x=x^{3}$
$-2x^{2}-x^{2}+2x+x-1$
$\implies x^{3}-4x^{2}+5x-1=0$
Now we are dealing with a cubic equation , this can be made by replacing $x$ by $y+ \frac{4}{3}$ to get rid of $x^{2} $ term, this gives
$+ 5(y+\frac{4}{3})-1=0$
$ y^{2}+3y^{2}(\frac{4}{3})+$
$3y(\frac{4}{3})+ (\frac{4}{3})^3$
$-4(y^{2}+2y(\frac{4}{3}))+(\frac{4}{3})^{2}$
$+5y+\frac{20}{3}-1=0$
$ y^{3}+4y^{2}+\frac{16y}{3}$
$+\frac{64}{27}-4y^{2}-\frac{32y}{3}$
$-\frac{64}{9}+5y+\frac{20}{3}-1=0$
$\implies y^{3}-\frac{y}{3}+\frac{25}{27}=0$
$B=\frac{25}{27}$, we get
$A-3st=0$
Here we use the larger solution , the other solution also works. This gives
$t=\frac{1}{3}\sqrt[3]{\frac{25+\sqrt[3]{69}}{2}}$ and
$s=\frac{A}{3t}=-\frac{1}{3}\sqrt[3]{\frac{2}{25+\sqrt[3]{69}}}$
Hence, the solution $x=y+\frac{4}{3}=s-t+\frac{4}{3}$
$f^{'}=3x^{2}-8x+5=(x-1)(3x-5)$
It is possible in $(\infty, 1]$ negative in $(1,\frac{5}{3})$ and possible in $\frac{5}{3}, \infty$ , since $f(t)=1$ and $f(\frac{5}{3})=\frac{23}{27}$, the function $f$ is possible in $[, \infty$ and has only one zero which is $\approx 0.24$ in $-\infty, 1$.