admin321@@ June 23, 2021 2 Comments 264 Views23 Likes Find the proof of the argument Document Prove that $e^{i\pi}+1=0$ To start , let's expand the exponential function $e^{z}=1+\frac{z}{1!}+\frac{z^{2}}{2!}+ ...+ \frac{z^{n}}{n!}+...$ $z=x+iy$, putting $x=0$, we get $z=iy$ $e^{iy}=1+\frac{iy}{1!}+\frac{{iy}^{2}}{2!}+ \frac{{iy}^{3}}{3!}+ \frac{{iy}^{4}}{4!}+...$ $=(1-\frac{y^2}{2!}+\frac{y^4}{4!}-... ) +i(y-\frac{y^3}{3!}+\frac{y^5}{5!}-... )$ $=cosy+isiny$ $e^{z}=e^{x}e^{iy}=e^{x}(cos (y)+isin (y))$ $x+iy=\gamma(cos\theta -isin\theta)=\gamma e^{i\theta}$ $z=x+iy[\textbf{Cartesian form}]$ $=\gamma(sin\theta +isin\theta)[\textbf{Polar form}]$ $=\gamma e^{i\theta}[\textbf{Exponential form}]$ $-1=-1+i(0)$ $\implies \gamma=\sqrt(-1)^{2}=1$ $\implies \theta =\pi$ $\implies e^{i\pi}=-1$ Tags: balance courses motivation TwitterFacebookPinterestLinkedin
We realised we really wanted to catch a glimpse of what went on behind the scenes of the companies we looked up to. And we thought other people would want to know too.
So we decided to organise an event to share these stories. Today, we run monthly Show & Tell events and an annual conference.