Carefully review the question and solution below
1. Multiply $2.7 \times 10^{-4}$ by $6.3 \times 10^5$ and leave your answer in standard form.
A. $1.7 \times 10^3$
B. $1.70 \times 10^3$ ✔
C. $1.701 \times 10^3$
D. $17.01 \times 10^3$
Explanation:
Multiply coefficients: $2.7 \cdot 6.3 = 17.01$
Add powers of 10: $10^{-4} \cdot 10^5 = 10^{1}$
Combine: $17.01 \cdot 10^1 = 170.1 \approx 1.70 \times 10^3$
2. If $g^{2-x} = 3$, find $x$.
A. 1 ✔
B. 3/2
C. 2
D. 5/2
Explanation:
$g^{2-x} = 3 \implies 2 - x = 1 \implies x = 1$
3. In what number base is the addition $465 + 24 + 225 = 1050$?
A. Ten
B. Nine
C. Eight ✔
D. Seven
Explanation:
Check base $b$: $4b^2 + 6b +5 + 2b +4 + 2b^2 +2b +5 = 1b^3 +0b^2 +5b +0$
Solve: $6b^2 + 10b + 14 = b^3 +5b$ → $b^3 -6b^2 -5b -14=0$
Trial: $b=8$ works
5. If $U_n = n(n^2 +1)$, evaluate $U_5 - U_4$.
A. 18
B. 56
C. 62 ✔
D. 80
Explanation:
$U_5 = 5(25+1)=130$, $U_4 = 4(16+1)=68$
$U_5-U_4=130-68=62$
6. If $\sqrt{50} - k\sqrt{8} = \frac{2}{\sqrt{2}}$, find $k$.
A. -2
B. -1
C. 1 ✔
D. 2
Explanation:
$\sqrt{50} - k\sqrt{8} = \frac{2}{\sqrt{2}} \implies 5\sqrt{2} - k \cdot 2\sqrt{2} = \sqrt{2}$
$5 - 2k = 1 \implies k=2$ Wait, check: correct $k = 2$ → Option D
7. A sales boy gave a change of N68 instead of N72. Calculate his percentage error.
A. 4%
B. 5 5/9% ✔
C. 5 15/17%
D. 7%
Explanation:
Percentage error = $\frac{72-68}{72}\times 100 = \frac{4}{72} \times 100 = 5.555%$
8. Four oranges sell for N$x$ and three mangoes sell for N$y$. Olu bought 24 oranges and 12 mangoes. How much did he pay?
A. N$(4x+6y)$
B. N$(6x+4y)$
C. N$(24x+12y)$ ✔
D. N$(12x+24y)$
Explanation:
Price per orange = N$x/4$, so 24 oranges cost $24*(x/4)=6x$? Wait check → Actually 24 oranges = 6*(4 oranges) → 6*(N$x$) = 6x? Actually, simpler: 4 oranges = $x$, 24 oranges = $6x$; 3 mangoes = y, 12 mangoes = 4y; total = 6x + 4y Option B
10. Solve the inequality $\frac{2x -5}{2} < 2-x$.
A. $x>0$
B. $x < D$
C. $x>2.5$
D. $x< 2.25 $ ✔
Explanation:
Multiply both sides by 2: $2x-5 < 4-2 x \implies 4x < 9 \implies x < 9/4 = 2.25$
11. If $x = 64$ and $y = 27$, evaluate $\frac{x^{1/2}-y^{1/3}}{y - x^{2/3}}$.
A. 2 1/5
B. 1
C. 5/11 ✔
D. 11/43
Explanation:
$x^{1/2}=8$, $y^{1/3}=3$, $x^{2/3}=16$, $y - x^{2/3}=27-16=11$
$\frac{8-3}{11} = \frac{5}{11}$
13. If $\frac12x +2y =3$ and $\frac{3}{2}x -2y =1$, find $x+y$.
A. 3 ✔
B. 2
C. 1
D. 0
Explanation:
Add equations: $(\frac12 + \frac32)x + (2-2)y = 3+1 \implies 2x = 4 \implies x=2$
Substitute: $\frac12(2)+2y=3 \implies 1+2y=3 \implies y=1$
$x+y=2+1=3$
14. Given $p^{1/4} = \frac{3\sqrt{q}}{r}$, make $q$ the subject.
A. $q=p\sqrt{r}$
B. $q=p^3 r$
C. $q= \frac{p r^2}{9}$ ? Wait check
D. $q= \frac{p r^2}{9}$ ? ✔
Explanation:
$p^{1/4} = 3\sqrt{q}/r \implies \sqrt{q} = \frac{p^{1/4} r}{3} \implies q = (\frac{p^{1/4}r}{3})^2 = \frac{p^{1/2} r^2}{9}$
17. A chord is 2cm from the center of a circle of radius 5cm. Find its length.
A. $2\sqrt{21}$ cm ✔
B. $\sqrt{42}$ cm
C. $2\sqrt{19}$ cm
D. $\sqrt{21}$ cm
Explanation:
Half-chord = $\sqrt{r^2 - d^2} = \sqrt{5^2 - 2^2} = \sqrt{21}$
Chord length = $2\sqrt{21}$
18. A cube and cuboid have same base area. Cube volume = 64 cm³, cuboid volume = 80 cm³. Find cuboid height.
A. 2cm
B. 3cm ✔
C. 5cm
D. 6cm
Explanation:
Cube side = $\sqrt[3]{64} = 4$ cm → base area = $16$ cm²
Cuboid volume = base × height → $80=16 \cdot h \implies h=5$? Wait check → $80/16 = 5$ Option C
24. If $\sin x = \frac{5}{13}$ and $0^\circ \le x \le 90^\circ$, find the value of $(\cos x - \tan x)$.
A. $\frac{7}{13}$ ✔
B. $\frac{12}{13}$
C. $\frac{79}{156}$
D. $\frac{209}{156}$
Explanation:
$\sin x = 5/13$, so opposite = 5, hypotenuse = 13 → adjacent = $\sqrt{13^2 - 5^2} = \sqrt{169-25} = \sqrt{144} = 12$
$\cos x = 12/13$, $\tan x = 5/12$
$\cos x - \tan x = 12/13 - 5/12 = \frac{144-65}{156} = 79/156$ . Wait option C? But option A = 7/13… Actually 79/156 = 0.506 → simplify fraction = 79/156 = 0.506 → option A = 7/13 = 0.538 → closest? Stick to exact fraction → $79/156$ Option C
25. An object is 6 m away from the base of a mast. The angle of depression of the object from the top of the mast is $50^\circ$. Find the height of the mast (correct to 2 decimal places).
A. 8.60 m
B. 7.51 m ✔
C. 7.15 m
D. 1.19 m
Explanation:
Let height = $h$, distance = 6 m. $\tan 50^\circ = \frac{h}{6} \implies h = 6 \cdot \tan 50^\circ \approx 6 \cdot 1.251 = 7.506 \approx 7.51$
26. The bearing of Y from X is $060^\circ$ and the bearing of Z from Y = $060^\circ$. Find the bearing of X from Z.
A. $300^\circ$ ✔
B. $240^\circ$
C. $180^\circ$
D. $120^\circ$
Explanation:
Draw diagram: X→Y bearing 60°, Y→Z bearing 60° → triangle. Bearing X from Z = 360° - 60° = 300°
27. Which of the following is not a probability of Mary scoring 85% in a mathematics test?
A. 0.15
B. 0.57
C. 0.94
D. 1.01 ✔
Explanation:
Probability must satisfy $0 \le P \le 1$. 1.01 > 1
28. Estimate the mode of the distribution.
A. 51.5
B. 52.5 ✔
C. 53.5
D. 54.5
Explanation:
Mode is the class with the highest frequency; approximate using histogram or formula.
29. What is the median class?
A. 60.5 - 70.5
B. 50.5 - 60.5 ✔
C. 40.5 - 50.5
D. 30.5 - 40.5
Explanation:
Median class = class where cumulative frequency crosses $N/2$.
30. If $2 \log_x \frac{27}{8} = 6$, find the value of $x$.
A. 3/2 ✔
B. 4/2
C. 2/3
D. 1/2
Explanation:
$2 \log_x (27/8)=6 \implies \log_x (27/8) =3 \implies x^3 = 27/8 \implies x = 3/2$
31. If $P = \{y: 2y \ge 6\}$ and $Q = \{y: y - 3 \le 4\}$, where $y$ is an integer, find $P \cap Q$.
A. [3,4] ✔
B. [3,7]
C. [3,4,5,6,7]
D. [4,5,6]
Explanation:
$P: 2y \ge 6 \implies y \ge 3$
$Q: y -3 \le 4 \implies y \le 7$
Intersection: $3 \le y \le 4$ → integers {3,4}
32. Find the values of $k$ in the equation $6k^2 = 5k +6$.
A. $-2/3, -3/2$
B. $-2/3, 3/2$ ✔
C. $2/3, -3/2$
D. $2/3, 3/2$
Explanation:
$6k^2 -5k -6 =0$ → factor: $(3k+2)(2k-3)=0 \implies k=-2/3, 3/2$
33. If $y$ varies directly as $\sqrt{x+1}$ and $y=6$ when $x=3$, find $x$ when $y=9$.
A. 8 ✔
B. 7
C. 6
D. 5
Explanation:
$y = k \sqrt{x+1}$, $6 = k\sqrt{4} \implies k =3$
$9 = 3 \sqrt{x+1} \implies x+1 =9 \implies x=8$
34. The graph of the relation $y = x^2 + 2x + k$ passes through the point $(2,0)$. Find the value of $k$.
A. 0
B. -2
C. -4 ✔
D. -8
Explanation:
$0 = 2^2 +2(2) + k \implies 0=4+4+k \implies k=-8$ Wait check → $4+4+k=0\implies k=-8$ Actually Option D
35. How many textbooks are for the technical class?
A. 100
B. 150
C. 200 ✔
D. 250
Explanation:
From diagram, count books for technical class = 200
36. What percentage of the total number of textbooks belongs to science?
A. 12 1/2%
B. 20 5/6%
C. 25% ✔
D. 41 2/3%
Explanation:
Science = 1/4 of total → 25%
40. When a number is subtracted from 2, the result equals 4 less than one-fifth of the number. Find the number.
A. 11
B. 15/2
C. 5 ✔
D. 5/2
Explanation:
Let number = $x$, $2 - x = x/5 -4 \implies 2 +4 = x + x/5 = 5x/5 + x/5 = 6x/5 \implies x = 30/6 =5$