Practice Question with Explanation

Carefully review the question and solution below

1. Multiply $2.7 \times 10^{-4}$ by $6.3 \times 10^5$ and leave your answer in standard form.

A. $1.7 \times 10^3$
B. $1.70 \times 10^3$
C. $1.701 \times 10^3$
D. $17.01 \times 10^3$

Explanation:
Multiply coefficients: $2.7 \cdot 6.3 = 17.01$ Add powers of 10: $10^{-4} \cdot 10^5 = 10^{1}$ Combine: $17.01 \cdot 10^1 = 170.1 \approx 1.70 \times 10^3$

2. If $g^{2-x} = 3$, find $x$.

A. 1
B. 3/2
C. 2
D. 5/2

Explanation:
$g^{2-x} = 3 \implies 2 - x = 1 \implies x = 1$

3. In what number base is the addition $465 + 24 + 225 = 1050$?

A. Ten
B. Nine
C. Eight
D. Seven

Explanation:
Check base $b$: $4b^2 + 6b +5 + 2b +4 + 2b^2 +2b +5 = 1b^3 +0b^2 +5b +0$ Solve: $6b^2 + 10b + 14 = b^3 +5b$ → $b^3 -6b^2 -5b -14=0$ Trial: $b=8$ works

5. If $U_n = n(n^2 +1)$, evaluate $U_5 - U_4$.

A. 18
B. 56
C. 62
D. 80

Explanation:
$U_5 = 5(25+1)=130$, $U_4 = 4(16+1)=68$ $U_5-U_4=130-68=62$

6. If $\sqrt{50} - k\sqrt{8} = \frac{2}{\sqrt{2}}$, find $k$.

A. -2
B. -1
C. 1
D. 2

Explanation:
$\sqrt{50} - k\sqrt{8} = \frac{2}{\sqrt{2}} \implies 5\sqrt{2} - k \cdot 2\sqrt{2} = \sqrt{2}$ $5 - 2k = 1 \implies k=2$ Wait, check: correct $k = 2$ → Option D

7. A sales boy gave a change of N68 instead of N72. Calculate his percentage error.

A. 4%
B. 5 5/9%
C. 5 15/17%
D. 7%

Explanation:
Percentage error = $\frac{72-68}{72}\times 100 = \frac{4}{72} \times 100 = 5.555%$

8. Four oranges sell for N$x$ and three mangoes sell for N$y$. Olu bought 24 oranges and 12 mangoes. How much did he pay?

A. N$(4x+6y)$
B. N$(6x+4y)$
C. N$(24x+12y)$
D. N$(12x+24y)$

Explanation:
Price per orange = N$x/4$, so 24 oranges cost $24*(x/4)=6x$? Wait check → Actually 24 oranges = 6*(4 oranges) → 6*(N$x$) = 6x? Actually, simpler: 4 oranges = $x$, 24 oranges = $6x$; 3 mangoes = y, 12 mangoes = 4y; total = 6x + 4y Option B

10. Solve the inequality $\frac{2x -5}{2} < 2-x$.

A. $x>0$
B. $x < D$
C. $x>2.5$
D. $x< 2.25 $

Explanation:
Multiply both sides by 2: $2x-5 < 4-2 x \implies 4x < 9 \implies x < 9/4 = 2.25$

11. If $x = 64$ and $y = 27$, evaluate $\frac{x^{1/2}-y^{1/3}}{y - x^{2/3}}$.

A. 2 1/5
B. 1
C. 5/11
D. 11/43

Explanation:
$x^{1/2}=8$, $y^{1/3}=3$, $x^{2/3}=16$, $y - x^{2/3}=27-16=11$ $\frac{8-3}{11} = \frac{5}{11}$

13. If $\frac12x +2y =3$ and $\frac{3}{2}x -2y =1$, find $x+y$.

A. 3
B. 2
C. 1
D. 0

Explanation:
Add equations: $(\frac12 + \frac32)x + (2-2)y = 3+1 \implies 2x = 4 \implies x=2$ Substitute: $\frac12(2)+2y=3 \implies 1+2y=3 \implies y=1$ $x+y=2+1=3$

14. Given $p^{1/4} = \frac{3\sqrt{q}}{r}$, make $q$ the subject.

A. $q=p\sqrt{r}$
B. $q=p^3 r$
C. $q= \frac{p r^2}{9}$ ? Wait check
D. $q= \frac{p r^2}{9}$ ?

Explanation:
$p^{1/4} = 3\sqrt{q}/r \implies \sqrt{q} = \frac{p^{1/4} r}{3} \implies q = (\frac{p^{1/4}r}{3})^2 = \frac{p^{1/2} r^2}{9}$

17. A chord is 2cm from the center of a circle of radius 5cm. Find its length.

A. $2\sqrt{21}$ cm
B. $\sqrt{42}$ cm
C. $2\sqrt{19}$ cm
D. $\sqrt{21}$ cm

Explanation:
Half-chord = $\sqrt{r^2 - d^2} = \sqrt{5^2 - 2^2} = \sqrt{21}$ Chord length = $2\sqrt{21}$

18. A cube and cuboid have same base area. Cube volume = 64 cm³, cuboid volume = 80 cm³. Find cuboid height.

A. 2cm
B. 3cm
C. 5cm
D. 6cm

Explanation:
Cube side = $\sqrt[3]{64} = 4$ cm → base area = $16$ cm² Cuboid volume = base × height → $80=16 \cdot h \implies h=5$? Wait check → $80/16 = 5$ Option C

24. If $\sin x = \frac{5}{13}$ and $0^\circ \le x \le 90^\circ$, find the value of $(\cos x - \tan x)$.

A. $\frac{7}{13}$
B. $\frac{12}{13}$
C. $\frac{79}{156}$
D. $\frac{209}{156}$

Explanation:
$\sin x = 5/13$, so opposite = 5, hypotenuse = 13 → adjacent = $\sqrt{13^2 - 5^2} = \sqrt{169-25} = \sqrt{144} = 12$ $\cos x = 12/13$, $\tan x = 5/12$ $\cos x - \tan x = 12/13 - 5/12 = \frac{144-65}{156} = 79/156$ . Wait option C? But option A = 7/13… Actually 79/156 = 0.506 → simplify fraction = 79/156 = 0.506 → option A = 7/13 = 0.538 → closest? Stick to exact fraction → $79/156$ Option C

25. An object is 6 m away from the base of a mast. The angle of depression of the object from the top of the mast is $50^\circ$. Find the height of the mast (correct to 2 decimal places).

A. 8.60 m
B. 7.51 m
C. 7.15 m
D. 1.19 m

Explanation:
Let height = $h$, distance = 6 m. $\tan 50^\circ = \frac{h}{6} \implies h = 6 \cdot \tan 50^\circ \approx 6 \cdot 1.251 = 7.506 \approx 7.51$

26. The bearing of Y from X is $060^\circ$ and the bearing of Z from Y = $060^\circ$. Find the bearing of X from Z.

A. $300^\circ$
B. $240^\circ$
C. $180^\circ$
D. $120^\circ$

Explanation:
Draw diagram: X→Y bearing 60°, Y→Z bearing 60° → triangle. Bearing X from Z = 360° - 60° = 300°

27. Which of the following is not a probability of Mary scoring 85% in a mathematics test?

A. 0.15
B. 0.57
C. 0.94
D. 1.01

Explanation:
Probability must satisfy $0 \le P \le 1$. 1.01 > 1

28. Estimate the mode of the distribution.

A. 51.5
B. 52.5
C. 53.5
D. 54.5

Explanation:
Mode is the class with the highest frequency; approximate using histogram or formula.

29. What is the median class?

A. 60.5 - 70.5
B. 50.5 - 60.5
C. 40.5 - 50.5
D. 30.5 - 40.5

Explanation:
Median class = class where cumulative frequency crosses $N/2$.

30. If $2 \log_x \frac{27}{8} = 6$, find the value of $x$.

A. 3/2
B. 4/2
C. 2/3
D. 1/2

Explanation:
$2 \log_x (27/8)=6 \implies \log_x (27/8) =3 \implies x^3 = 27/8 \implies x = 3/2$

31. If $P = \{y: 2y \ge 6\}$ and $Q = \{y: y - 3 \le 4\}$, where $y$ is an integer, find $P \cap Q$.

A. [3,4]
B. [3,7]
C. [3,4,5,6,7]
D. [4,5,6]

Explanation:
$P: 2y \ge 6 \implies y \ge 3$ $Q: y -3 \le 4 \implies y \le 7$ Intersection: $3 \le y \le 4$ → integers {3,4}

32. Find the values of $k$ in the equation $6k^2 = 5k +6$.

A. $-2/3, -3/2$
B. $-2/3, 3/2$
C. $2/3, -3/2$
D. $2/3, 3/2$

Explanation:
$6k^2 -5k -6 =0$ → factor: $(3k+2)(2k-3)=0 \implies k=-2/3, 3/2$

33. If $y$ varies directly as $\sqrt{x+1}$ and $y=6$ when $x=3$, find $x$ when $y=9$.

A. 8
B. 7
C. 6
D. 5

Explanation:
$y = k \sqrt{x+1}$, $6 = k\sqrt{4} \implies k =3$ $9 = 3 \sqrt{x+1} \implies x+1 =9 \implies x=8$

34. The graph of the relation $y = x^2 + 2x + k$ passes through the point $(2,0)$. Find the value of $k$.

A. 0
B. -2
C. -4
D. -8

Explanation:
$0 = 2^2 +2(2) + k \implies 0=4+4+k \implies k=-8$ Wait check → $4+4+k=0\implies k=-8$ Actually Option D

35. How many textbooks are for the technical class?

A. 100
B. 150
C. 200
D. 250

Explanation:
From diagram, count books for technical class = 200

36. What percentage of the total number of textbooks belongs to science?

A. 12 1/2%
B. 20 5/6%
C. 25%
D. 41 2/3%

Explanation:
Science = 1/4 of total → 25%

40. When a number is subtracted from 2, the result equals 4 less than one-fifth of the number. Find the number.

A. 11
B. 15/2
C. 5
D. 5/2

Explanation:
Let number = $x$, $2 - x = x/5 -4 \implies 2 +4 = x + x/5 = 5x/5 + x/5 = 6x/5 \implies x = 30/6 =5$

Share this page

Students can also explore our